CHAPTER 9 BASIC CONCEPTS OF CHEMICAL BONDING

9-1. How many valence electrons are expected for an element that is in group five of the periodic table?

(a)	three	(b)	five
(c)	eight	(d)	ten

9-2. Which of the following elements is <u>most</u> likely to participate in the formation of multiple bonds?

(a)	Н	(b)	Na
(c)	Cl	(d)	S

9-3. Which of the following pairs of bonded atoms would be expected to have the longest bond length?

(a)	C—N	(b)	C—S
(c)	C—B	(d)	C—F

- 9-4. Which of the descriptions below is the best representation of the energy change involved in the process of breaking bonds in a molecule? (Ignore any subsequent bond formation that may occur.)
 - (a) Always exothermic.
 - (b) Always endothermic.
 - (c) The net energy change in breaking a bond is zero.
 - (d) May be exothermic or endothermic depending on conditions.

9-5. How many sigma () and pi () electron pairs are there in a carbon dioxide molecule?

(c) two sigma, two pi (d) two sigma, one pi

- 9-6. There is a triple bond between the two nitrogen atoms in the nitrogen molecule. How many sigma () and pi () electron pairs are present in this nitrogen-nitrogen bond?
 - (a) one sigma, zero pi (b) one sigma, one pi
 - (c) one sigma, two pi (d) two sigma, one pi
- 9-7. Which of the following elements is <u>most</u> likely to form compounds involving an expanded valence shell of electrons?
 - (a) O (b) Na (c) P (d) N

9-8. Which of the following statements best describes the relationship between bond length and bond strength for a series of compounds involving bonds between the same two atoms?

- (a) The greater the bond strength, the longer the bond.
- (b) The greater the bond strength, the shorter the bond.
- (c) Bond length and bond strength are not related.
- (d) The relationship between bond length and bond strength depends on other factors.

9-9. Which of the following combinations of two elements is <u>most</u> likely to produce highly ionic bonds?

- (a) nitrogen and oxygen (b) nitrogen and fluorine
- (c) boron and nitrogen (d) lithium and fluorine
- 9-10. Which of the following combinations of two elements is <u>most</u> likely to produce covalent bonds?
 - (a) nitrogen and oxygen (b) nitrogen and fluorine
 - (c) sodium and nitrogen (d) lithium and fluorine
- 9-11. Which of the following salts is expected to have the lowest solubility in water?
 - (a) NaF (b) NaCl
 - (c) NaI (d) NaBr

- 9-12. Which of the following salts is expected to have the highest melting point?
 - (a) NaF (b) NaCl
 - (c) NaI (d) NaBr

9-13. Predict which of each pair should be more soluble in water.

- (i) KCl or KI
- (ii) MgO or BaO
- 9-14. Predict which compound in each of the following pairs should have the higher melting point.
 - (i) NaCl or RbCl
 - (ii) NaCl or MgCl₂
- 9-15. Which of the following is a correct Lewis structure?

	H—N—H		H—P—H
(a)	H	(b)	I H ●●
(c)	Н—О—Н	(d)	H—F ●●

9-16. Which of the following is NOT a correct Lewis dot structure?

(a)	N≡N•	(b)	H—C≡N :
(c)		(d)	C≡O:

9-17. Which of the following is NOT a correct Lewis dot structure?

(a)
$$\begin{bmatrix} \vdots 0 \vdots \\ H \\ H \\ -C \\ -H \end{bmatrix}^{-}$$
 (b) H^{-}
(b) H^{-}
(c) $\vdots 0^{-}$ H (d) $: N \equiv N - 0^{-}$

9-18. Which of the following is NOT a correct Lewis dot structure?

9-19. Which of the following is NOT a correct Lewis resonance structure for the N₂O molecule?

(a)
$$N \equiv N \equiv 0$$

(b) $N \equiv N \equiv 0$
(c) $N \equiv N = 0$
(d) $N \equiv N \equiv 0$

9-20. Which of the following is NOT a correct Lewis resonance structure for the HCO_2^{-1} ion?

	[н-с=]		H - C	= ::] -		$\left[H - C - H \right]$	0
(a)	 		(b)			(c)	 :0:	

9-21. Which of the following is NOT a correct Lewis dot structure?

9-22. According to VSEPR Theory, what number of structural electron pairs is normally expected to produce a tetrahedral structural-pair geometry?

- (a) three (b) four
- (c) five (d) six

9-23. According to VSEPR Theory, what number of structural electron pairs is normally expected to produce a trigonal planar structural-pair geometry?

(a)	three	(b)	four
· ·			

(c) five (d) six

9-24. According to VSEPR Theory, what number of structural electron pairs is normally expected to produce an octahedral structural-pair geometry?

(a)	three	(b)	four
(c)	five	(d)	six

9-25. Based on the Valence Shell Electron Pair Repulsion Theory (VSEPR), what is the molecular shape of BeCl₂?

(a)	linear	(b)	trigonal planar
(c)	tetrahedral	(d)	trigonal bipyramid

9-26. Based on the Valence Shell Electron Pair Repulsion Theory (VSEPR), what is the molecular shape of PCl₅?

(a)	linear	(b)	trigonal planar
(c)	tetrahedral	(d)	trigonal bipyramid

9-27. Based on the Valence Shell Electron Pair Repulsion Theory (VSEPR), what is the molecular shape of CCl_{4} ?

- (a) linear (b) trigonal planar
- (c) tetrahedral (d) trigonal bipyramid

9-28. Based on the Valence Shell Electron Pair Repulsion Theory (VSEPR), which of the following corresponds most closely to the shape of the IF_2^{-1} ion?

- (a) linear (b) "T-shaped"
- (c) bent (bond angle 120°) (d) bent (bond angle 109.5°)

9-29.	Based on the Valence Shell Electron Pair Repulsion Theory (VSEPR), which of the following corresponds most closely to the molecular shape of SCl_2 ?				
	(a)	linear	(b)	"T-shaped"	
	(c)	bent (bond angle 120°)	(d)	bent (bond angle 109.5°)	
9-30.	Based	on the Valence Shell Electron Pair Rep	pulsion '	Theory (VSEPR), which of the	
	follow	ing corresponds most closely to the sh	ape of C	CIF ₂ ⁺ ?	
	(a)	linear	(b)	"T-shaped"	
	(c)	bent (bond angle 120°)	(d)	bent (bond angle 109.5°)	
9-31.	1. Based on the Valence Shell Electron Pair Repulsion Theory (VSEPR), which of the following corresponds most closely to the molecular geometry of ClF_3 ?				
	(a)	linear	(b)	"T-shaped"	
	(c)	bent (bond angle 120°)	(d)	bent (bond angle 109.5°)	
9-32.	A certa How n	ain molecule has five structural electron nany lone pairs are present in this mole	n pairs a ecule?	and the molecule structure is linear.	
	(a)	none	(b)	one	
	(c)	two	(d)	three	
9-33.	A certa	ain molecule has six structural electron	pairs a	nd the molecule structure is a square	
	pyram	id. How many lone pairs are present in	n this m	olecule?	
	(a)	none	(b)	one	
	(c)	two	(d)	three	
9-34.	What i	is the approximate Cl-B-Cl angle in BC	Cl ₃ ?		
	(a)	90 [°]	(b)	109.5°	
	(c)	120 [°]	(d)	180 [°]	

9-35. What is the approximate H-N-H angle in NH_3 ?

(a)
$$90^{\circ}$$
 (b) 109.5°

(c)
$$120^{\circ}$$
 (d) 180°

9-36. What is the approximate C-O-C angle in the molecule

	Н	Η			
н		ГН			
11-	-CO-	-C			
	Н	Н			
(a)	90 ^o			(b)	109.5°
(c)	120°)		(d)	180 ^o

9-37. What is the approximate C-C-H angle in the acetylene molecule?

$$\begin{array}{ccc} H - C \equiv C - H \\ (a) & 90^{\circ} \\ (c) & 120^{\circ} \\ \end{array} \qquad \qquad (b) & 109.5^{\circ} \\ (d) & 180^{\circ} \\ \end{array}$$

9-38. What is the approximate I-I-I angle in I??

(a)
$$90^{\circ}$$
 (b) 109.5°

(c)
$$120^{\circ}$$
 (d) 180°

9-39. What is the approximate F-Si-F angle in $\operatorname{SiF}_{6}^{2-}$?

(a)
$$90^{\circ}$$
 (b) 109.5°

(c)
$$120^{\circ}$$
 (d) 180°

9-40. How many pi () bonds are found in the allene molecule?

$$\begin{array}{ccc} H & H \\ I & I \\ H - C = C - H \\ (a) & none \\ (c) & two \\ \end{array} \qquad (b) & one \\ (d) & three \\ \end{array}$$

9-41. How many pi () bonds are found in the compound below?

$$\begin{array}{ccc} H & H & H \\ H & -C \equiv C & -C = C \\ (a) & none \\ (c) & two \end{array} \qquad (b) & one \\ (d) & three \\ \end{array}$$

9-42. Which of the following best describes the variation of the electronegativity of the elements with respect to their position on the periodic table?

- (a) Increases across a period; increases down a group.
- (b) Increases across a period; decreases down a group.
- (c) Decreases across a period; increases down a group.
- (d) Decreases across a period; decreases down a group.
- 9-43. Which of the following groups of elements is arranged correctly in order of increasing electronegativity?
 - (a) B < O < Al < F (b) Al < B < O < F
 - (c) B < O < F < Al (d) F < O < B < Al
- 9-44. Which of the following groups of elements is arranged correctly in order of increasing electronegativity?
 - (a) Mg < P < N < F (b) N < Mg < P < F
 - (c) Mg < N < P < F (d) F < P < Mg < N

9-45. What is the formal charge of the N atom in nitric acid?

9-46. What is the formal charge on the O atoms in SO_3^{2-2} ?

9-47. What is the formal charge of the S atom in SO_3 ?

9-48. What is the carbon-oxygen bond order in formaldehyde?

	Н—С—Н		
(a)	1	(b)	1 1/2
(c)	2	(d)	2 1/2

9-49. What is the average carbon-oxygen bond order in the formate ion?

	H	-c=		
(a)	1		(b)	1 1/2
(c)	2		(d)	2 1/2

9-50. What is the average sulfur-oxygen bond order in SO_3 ?

9-51. In which species below is the carbon-oxygen bond longer?

9-52. Given the bond dissociation energies below, calculate the standard molar enthalpy of formation of ClF_3 .

	$1/2 \operatorname{Cl}_{2}(g) + 3/2 \operatorname{F}_{2}(g)$	$\operatorname{ClF}_{3}(g)$
	Bond	Dissociation Energy(kJ/mol)
	Cl—Cl	243
	F—F	159
	Cl—F	255
(a)	1125 kJ/mol	(b) 147 kJ/mol
(c)	-363 kJ/mol	(d) -405 kJ/mol

9-53. Given the bond dissociation energies below, calculate the standard molar enthalpy of formation of NF_3 .

	$1/2 N_2(g) + 3/2 F_2(g)$	NF ₃ (g)
	Bond	Dissociation Energy(kJ/mol)
	Ν	946
	F—F	159
	N—F	272
(a)	833 kJ/mol	(b) 440. kJ/mol
(c)	-104 kJ/mol	(d) -578 kJ/mol

9-54. The molar enthalpy of formation of phosgene, Cl₂CO, is -218.8 kJ/mol. What is the C=O bond energy in the molecule?

	:0:
Cl (g) + C(graphite) + $1/2$ O (g)	
You know2 that the enthalpy of vaporization of	C(graphite) is 717 kJ/mol and the bond

dissociation energies below.

	Bond	Dissociation Energy(kJ/mol)
	Cl—Cl	243
	$O - O in O_2$	498
	C—Cl ²	330
(a)	768 kJ/mol	(b) 328 kJ/mol
(c)	1347 kJ/mol	(d) 1098 kJ/mol

- 9-55. Which of the following pairs of bonded atoms would be expected to have the greatest bond polarity?
 - (a) N—O (b) B—N
 - (c) K—F (d) S—Cl
- 9-56. Which of the three bonds below is least polar?
 - (a) C-O (b) C-F(c) C-N (d) C-B
- 9-57. Which of the following molecules is polar?

(a)
$$BCl_3$$
 (b) N_2

- (c) CO_2 (d) CIF
- 9-58. Which of the following molecules is polar?

(a)
$$\operatorname{NCl}_3$$
 (b) O_2
(c) SF_6 (d) CS_2

9-59. Which of the following molecules is most likely to have a dipole moment?

(a)
$$CH_4$$
 (b) BeF_2
(c) SF_6 (d) NF_3

9-60. Which are the *polar* molecules below? (Molecular shapes are indicated. Lone pairs are not indicated)

9-61. Xenon difluoride is prepared from elemental xenon and fluorine.

 $Xe(g) + F_2(g) \qquad XeF_2(g)$

Calculate the enthalpy change, H, for this reaction knowing that the bond dissociation energies are 131 kJ/mol for Xe—F and 159 kJ/mol for F—F.

(a)	28 kJ	(b)	-28 kJ
(c)	-290. kJ	(d)	-103 kJ

9-62. Using the thermodynamic information below, estimate the bond dissociation energy for the B—Cl bond.

	D(Cl-Cl) = 243 kJ/mol			
	B(solid) B(gas)		H° f	[B(g)] = 563 kJ/mol
	B(solid) + $3/2 \operatorname{Cl}_2(g)$	BCl ₃ (g)	H° f	$[BCl_{3}(g)] = -403.76 \text{ kJ/mol}$
(a)	394 kJ		(b)	444 kJ
(c)	1210 kJ		(d)	1331 kJ

9-63. Cyanic acid has the electron dot structure below.

$$H-\mathbf{O}-C\equiv N$$
:

(i)	How many sigma () bonds are there in HOCN?	bonds?
-----	------------------	----------------------------	--------

- (ii) What is the value of the C—O—H angle? _____
- (iii) What is the value of the N—C—O angle? _____

9-64. Xenon difluoride, XeF₂, has the structure below (where the lone pairs are not included on the F atoms)

(i) What is the structural pair geometry about the Xe atom?

- (ii) What is the molecular geometry of the XeF₂ molecule? _____
- (iii) What is the value of the F—Xe—F angle?

- (iv) Is XeF₂ a polar molecule? _____
- 9-65. Boron trichloride, BCl_3 , can accept a pair of electrons from another molecule such as ammonia to form a coordinate covalent bond, as in the following reaction (the lone pairs of electrons around the Cl atoms are not shown):

(i) The structural pair geometry of the B atom in BCl₃ is _____ and the Cl-B-Cl angle is _____. When reaction occurs, the Cl-B-Cl angle changes to ______.
(ii) What is the least polar bond in the molecules above?

(a)
$$N-H$$
 (b) $B-Cl$

- (c) N—B (d) All have the same polarity.
- 9-66. Benzoic acid is a common organic acid.

- (i) How many sigma () bonds are there?
- (ii) How many pi () bonds are there?
- (iii) The bond angles are: 1 =; 2 =; 3 =.
- (iv) The most polar bonds (or bond) in the molecule are (is):

ANSWERS — CHAPTER 9

1.	b	11.	a	21.	c
2.	d	12.	a	22.	b
3.	b	13.	i = KI; ii = BaO	23.	а
4.	a	14.	$i = NaCl; ii = MgCl_2$	24.	d
5.	с	15.	b	25.	а
6.	c	16.	С	26.	d
7.	c	17.	a	27.	с
8.	b	18.	d	28.	а
9.	d	19.	d	29.	d
10.	а	20.	b	30.	d
31.	b	41.	d	51.	а
32.	d	42.	b	52.	d
33.	b	43.	b	53.	c
34.	c	44.	a	54.	а
35.	b	45.	b	55.	с
36.	b	46.	С	56.	d
37.	d	47.	d	57.	d
38.	d	48.	С	58.	а
39.	a	49.	b	59.	d
40.	с	50.	d	60.	b, c, e
61.	d				

- 61.
- 62.

b

63. $i = 3, 2; ii = 109^{\circ}; iii = 180^{\circ}$

i = trigonal bipyramid; ii = linear; iii = 180° ; iv = nonpolar 64.

65. i = trigonal planar, 120° , 109° ; ii = a

 $i = 15; ii = 4; iii = 120^{\circ}, 120^{\circ}, 109^{\circ}; iv = c$ 66.