California Lutheran University

INTRODUCTION

- A long snap with a fast release velocity (v_r) allows the punter to avoid contact from opponents and kick the football such that favorable field position is acquired [1]
- Three distinct phases constitute the long snap: stance phase (SP), force production phase (FPP), and release phase (RP) (Fig. 1) [2]

Figure 1. Phases of the long snap (from left to right): stance phase, force production phase, and release phase

- Limited, prior research has determined correlations between upper extremity kinematic variables, such as peak elbow flexion in FPP and shoulder angle in SP, and faster v_r [1,3,4]
- We aimed to determine further associations between upper extremity kinematic variables and long snap v_r in order to provide evidence-based principles for high school and college football players to produce faster snaps
- It was expected that greater elbow flexion in FPP and greater shoulder extension in SP would produce a faster long snap

METHODS

- Ten experienced football long snappers (five high school; five collegiate) participated in the study
- The average age (18.9 \pm 1.3 years), years of long snapping experience $(5.1 \pm 1.65 \text{ years})$, long snapping camps/lessons attended (15.9 \pm 9.5) camps/lessons), and body mass (99.6 \pm 7.5 kg) were measured
- Subjects performed six long snaps directed at the target placed 13.3 meters (15 yards) behind the anterior tip of the football (Fig. 2)
- Trials were video recorded at 30 Hz from a sagittal view placed on the left side of the subject
- Kinovea v0.8.27 was used for tracking video recorded trials (**Fig. 3**)
- Shoulder and elbow joint angle (Θ), angular velocity (Θ /s), and timing (represented as a % of FPP) were tracked and calculated throughout all three phases of the long snap
- RV was tracked immediately after RP
- Correlational analyses were conducted between upper extremity kinematic variables and v_r for each trial (α =0.05)

Figure 2 (left). Image of long snapper subject and experimental set-up Figure 3 (right). Interface of Kinovea v0.8.27 software with tracking markers and displayed shoulder joint and elbow joint angles

Upper Extremity Angular Kinematics of an American Football Long Snap Sam Balentine and Travis Peterson, Ph.D. Exercise Science Department, California Lutheran University

RESULTS

Figure 4. Image of left elbow joint extended at SP (0 ms or 0% of FPP)

Figure 5. Image of left elbow joint at minimum elbow joint angle (peak flexion) in FPP (300 ms or 81.7% of FPP)

Figure 6. Image of left elbow joint at max elbow joint angular velocity in FPP (333 ms or 90.7% of FPP)

Figure 7. Image of left elbow joint angle at release (367 ms or 100% of FPP)

Ŏ 15.8 15.6 15.5

Figure 10. College athletes' ball release velocity increased as elbow joint angular velocity increased (r=0.881, p=0.032)

- High school long snappers attained larger v_r values when left elbow extension at RP was greater (r=0.970, p=0.002) (**Fig. 8**)
- Faster long snaps occurred when the left elbow joint angle was extended from the most flexed position later in the snap for both the whole group (r=0.829, p=0.002) and the collegiate long snappers (r=0.907, p=0.020)(**Fig. 9**)
- Additionally, when collegiate long snappers extended their left elbow faster (i.e. larger maximum angular velocities), there was a tendency for a larger v_r to be produced (r=0.881, p=0.032) (**Fig. 10**)
- Shoulder joint angle in SP was not significantly correlated with v_r for all subjects (r=0.079, p=0.897)
- Peak elbow flexion in FPP yielded a statistically insignificant association with v_r for all subjects (r=-0.465, p=0.172)

DISCUSSION & CONCLUSION

- The importance of elbow angular kinematics in long snapping from prior research was ultimately supported by this study, yet shoulder angular kinematics did not seem as influential to v_r
- Conservation of Angular Momentum may explain the importance of maintaining maximally flexed elbow angle longer through the snap
 - Maintaining a flexed elbow decreases overall arm moment of inertia, making the arm easier to swing backward.
 - The elbow then must extend over a larger range in a shorter duration as the ball is released, creating larger v_r values
- High school long snappers may not display many significant relationships between elbow kinematic variables and v_r due to their lesser accumulated instruction, musculature development, and overall physical maturation, per prior research [3]
- This study would have benefitted from a 3-dimensional analysis of the snap where improved accuracy of joint angular kinematics and implication of right side – left side kinematics could be determined
- In general, American football long snappers should emphasize extending their left elbow faster and closer to RP in order to obtain a larger v_r

REFERENCES AND ACKNOWLEDGMENTS

29(8), 2148-2166.

Conditioning Research, 19(4), 816-820.

California Lutheran University

RESULTS (cont'd)

- Chizewski, M.G. & Alexander, M.J.L. (2015). A biomechanical comparison of the long snap in football between high school and university football players. Journal of Strength and Conditioning Research,
- Ohton, D. (1988). A kinesiological look at the long snap in football. NSCA Journal, 10(1), 4-13.
- Blegen, M., Goldsworthy, W.S., Stulz, D.A., Gibson, T., Street, G.M., & Bacharach, D.W. (2005). A comparison of scholastic and collegiate longsnapping techniques. Journal of Strength and
- Henrici, R.C. (1967). A cinemagraphical analysis of the center snap on the punt formation.
- Thank you to the ALLIES in STEM program for supporting and funding this research project