Natural Science - Oral Presentation Markov Chains and Snakes and Ladders

Nevynne De Leon
California Lutheran University

April 26, 2023

Introduction

Snakes and Ladders

Natural Science - Oral Presentation Markov Chains and Snakes and Ladders

Introduction Cont.

Rules of Snakes and Ladders

- Start at space 0
- Roll a 6 sided die and move that many spaces forward
- Go up ladders
- Go down snakes
- Land exactly at 100 or "bounce" back

Statement of Project

Objective

The project aims to use Markov Chain models and its theorems and apply it to Snakes and Ladders to make it more competitive and fair.

Statement of Project Cont.

Definition of Fair and Competitive

I aim to make a board where the first roll is insignificant, where the expected number of rolls needed to go from space 1 to space 100 is about the same as going from space 6 to space 100 .

Standard Deviation

A low standard deviation of the expected number moves to get the end of the board starting from space $1,2,3,4,5$, and 6 , means a more a fair game of Snakes and Ladders

Definitions and Background

Definition

Markov Chains: A Markov chain or Markov process is a stochastic model describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event.

Definitions and Background cont.

Definitions and Background cont.

clouds rain sun
clouds
rain
sun $\left(\begin{array}{lll}0.4 & 0.3 & 0.3 \\ 0.5 & 0.3 & 0.2 \\ 0.5 & 0.1 & 0.4\end{array}\right)$

Definition

The Transition Matrix for a Markov chain is the matrix P with entries $p_{i j}$. The initial probability vector is the vector
$\pi_{0}=p_{j}^{(0)}=\operatorname{Pr}\left[f_{0}=s_{j}\right]$

Definitions and Background cont.

Different Kind of States

The minimal elements of the partial ordering of equivalence classes are called ergodic sets. The remaining elements are called transient sets. The element of a transient set are called transient states.
The elements of an ergodic set are called ergodic (or non-transient) states.

Definitions and Background cont.

Transition Matrix:

$$
\left[\begin{array}{ll}
I & 0 \\
R & Q
\end{array}\right] .
$$

Where I is the identity matrix, 0 is the matrix of all zeroes, R represents the transition from transient to ergodic sets, and Q represents the process that stays in the transient states.

Definitions and Background cont.

Fundamental Matrix:

$$
N=(I-Q)^{-1}
$$

Theorem

Each value $N_{i, j}$ in N represents the expected number of turns the piece stays in j when it starts the game at i.

Proof of Fundamental Matrix

Some Theory of the Fundamental Matrix
Theorem 3.2
For any absorbing Markov Chain. I $-Q$ has an inverse and

$$
(I-Q)^{-1}=I+Q+Q^{2} \ldots=\sum_{k-0}^{\infty} Q^{k}
$$

Theorem 3.4

$$
M_{i}\left[n_{j}\right]=N \text { where } s_{i}, s_{j} \in T
$$

Sample 3×3 Board

Sample 3×3 Board Rules

Rules of 3×3 board

- Start at space 0
- Roll a 4 sided die and move that many spaces forward
- Go up ladders (blue lines)
- Go down snakes (red lines)

■ Land exactly at 9 or "bounce" back

Transition Matrix without snakes and ladders

$$
\left[\begin{array}{llllllllll}
0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{4} & \frac{2}{4} & \frac{1}{4} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{4} & \frac{2}{4} & \frac{1}{4} \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

There is a diagonal of $\frac{1}{4}$ until the end

Transition Matrix With Snakes and Ladders

$$
\left[\begin{array}{cccccccccc}
0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{4} & \frac{2}{4} & \frac{1}{4} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{2}{4} & \frac{1}{4} & 0 & 0 & 0 & \frac{1}{4} & 0 \\
0 & 0 & 0 & \frac{1}{4} & \frac{1}{4} & 0 & 0 & \frac{1}{4} & \frac{1}{4} & 0 \\
0 & 0 & 0 & \frac{1}{4} & 0 & 0 & 0 & \frac{1}{4} & \frac{2}{4} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{4} & \frac{2}{4} & \frac{1}{4} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{4} & \frac{2}{4} & \frac{1}{4} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Notice some patterns in this Transition Matrix

Expected Value

Using a Python code to find the Fundamental Matrix, we then get the resulting vector of Expected Values with Snakes and ladders to be:
$\left[\begin{array}{c}7.09659091 \\ 6.84090909 \\ 6.27272727 \\ 5.81818182 \\ 5.45454545 \\ 1 \\ 1 \\ 4 \\ 4\end{array}\right]$

Expected Value cont.

We remove all of the "impossible" states, thus getting
$\left[\begin{array}{c}7.09659091 \\ 6.84090909 \\ 6.27272727 \\ 5.81818182 \\ 5.45454545 \\ 4 \\ 4\end{array}\right]$

With/Without Snakes and Ladders

Expected value:
With: $\left[\begin{array}{c}7.09659091 \\ 6.84090909 \\ 6.27272727 \\ 5.81818182 \\ 5.45454545 \\ 4 \\ 4\end{array}\right]$ Without: $\left[\begin{array}{c}6.44140625 \\ 5.953125 \\ 5.5625 \\ 5.25 \\ 5 \\ 4 \\ 4 \\ 4 \\ 4\end{array}\right]$

Standard Deviation

Standard Deviation of the Expected Value starting from space 1,2,3, and 4:

SD without snakes and ladders: 0.35636905220177 SD with snakes and ladders: 0.51835498562612

Bigger 10x10 board

100	99	98	97	96	95	94	93	92	91
81	82	83	84	85	86	97	88	89	90
80	79	78	77	76	75	74	73	72	71
61	62	63	64	65	66	67	68	69	70
60	59	58	57	56	55	54	53	52	51
41	42	43	44	45	46	47	48	49	50
40	39	38	37	36	35	34	33	32	31
21	22	23	24	25	26	27	28	29	30
20	19	18	17	16	15	14	13	12	11
1	2	3	4	5	6	7	8	9	10

Ladders:(1, 38), (4, 14), (9, 31), (21, 42), (28, 84), (51, 67), (71, 91)
Snakes:(17,7), $(54,34),(62,19),(64,60),(87,24),(93,73),(95,75),(98,79)$

Natural Science - Oral Presentation Markov Chains and Snakes and Ladders

Expected Value of 10×10 Board

Expected Value:

[78.01729741, 83.21632029, 82.75045955, 80.6725099, 82.78735372, 82.59279913].

Standard Deviation;
1.8255461673323

Revision to the 10×10 Board

Impossible/Unrealistic Revision:

100	99	98	97	96	95	94	93	92	91
81	82	83	84	85	86	97	88	89	90
80	79	78	77	76	75	74	73	72	71
61	62	63	64	65	66	67	68	69	70
60	59	58	57	56	55	54	53	52	51
41	42	43	44	45	46	47	48	49	50
40	39	38	37	36	35	34	33	32	31
21	22	23	24	25	26	27	28	29	30
20	19	18	17	16	15	14	13	12	11
1	2	3	4	5	5	7	8	9	10

Ladders: $(1,6),(2,6),(3,6),(4,6),(5,6),(9,31),(21,42),(28,84),(51,67),(71,91)$
Snakes: $(17,7),(54,34),(62,19),(64,60),(87,24),(93,73),(95,75),(98,79)$

Natural Science - Oral Presentation Markov Chains and Snakes and Ladders

Revisions cont.

Revision 1:

100	99	98	97	96	95	94	93	92	91
81	82	83	84	85	86	97	88	89	90
80	79	78	77	76	75	74	73	72	71
61	62	63	64	65	66	67	68	69	70
60	59	58	57	56	55	54	53	52	51
41	42	43	44	45	46	47	48	49	50
40	39	38	37	36	35	34	33	32	31
21	22	23	24	25	26	27	28	29	30
20	19	18	17	16	15	14	13	12	11
1	2	3	4	5	6	7	8	9	10

Ladders:[(9, 31), (21, 42), (28, 84), (51, 67), (71, 91)]
Snakes:[(17, 7), (54, 34), (62, 19), (64, 60), (87, 24), (93, 73), $(95,75),(98,79)]_{\underline{\underline{\underline{1}}}}$

Natural Science - Oral Presentation Markov Chains and Snakes and Ladders

Expected Value and Standard Deviation

Expected Value

[83.91201371, 83.65690523, 83.12810378, 82.93837528, 82.78735372, 82.59279913].

Standard Deviation
. 46951075134394

Thank you!

