Natural Science - Oral Presentation Markov Chains and Snakes and Ladders

Nevynne De Leon

California Lutheran University

April 26, 2023

イロト イポト イヨト イヨト

CLU

Nevynne De Leon

Introduction

Snakes and Ladders

Nevynne De Leon

Natural Science - Oral Presentation Markov Chains and Snakes and Ladders

2

・ロト ・四ト ・ヨト ・ヨト

Introduction Cont.

Rules of Snakes and Ladders

- Start at space 0
- Roll a 6 sided die and move that many spaces forward

Image: A math a math

CLU

- Go up ladders
- Go down snakes
- Land exactly at 100 or "bounce" back

Nevynne De Leon

Statement of Project

Objective

The project aims to use **Markov Chain** models and its theorems and apply it to Snakes and Ladders to make it more competitive and fair.

Image: A math a math

CLU

Nevynne De Leon

Statement of Project Cont.

Definition of Fair and Competitive

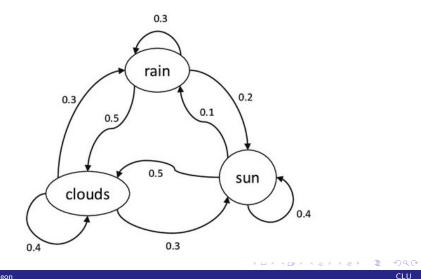
I aim to make a board where the first roll is insignificant, where the expected number of rolls needed to go from space 1 to space 100 is about the same as going from space 6 to space 100.

Standard Deviation

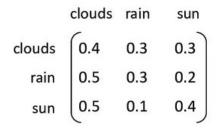
A low standard deviation of the expected number moves to get the end of the board starting from space 1,2,3,4,5, and 6, means a more a fair game of Snakes and Ladders

Nevynne De Leon

Natural Science - Oral Presentation Markov Chains and Snakes and Ladders


< D > < A > < B > <</p>

Definitions and Background


Definition

Markov Chains: A Markov chain or Markov process is a stochastic model describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event.

< 🗇 🕨

Nevynne De Leon

Definition

The *Transition Matrix* for a Markov chain is the matrix *P* with entries p_{ij} . The initial probability vector is the vector $\pi_0 = p_j^{(0)} = Pr[f_0 = s_j]$

CLU

Nevynne De Leon

Different Kind of States

The minimal elements of the partial ordering of equivalence classes are called ergodic sets. The remaining elements are called transient sets. The element of a transient set are called transient states. The elements of an ergodic set are called ergodic (or non-transient) states.

< 同 ▶ < 三 ▶

Transition Matrix:

$$\begin{bmatrix} I & 0 \\ R & Q \end{bmatrix}.$$

CLU

Where I is the identity matrix, 0 is the matrix of all zeroes, R represents the transition from transient to ergodic sets, and Q represents the process that stays in the transient states.

Fundamental Matrix:

$$N=(I-Q)^{-1}$$

Theorem

Each value $N_{i,j}$ in N represents the expected number of turns the piece stays in j when it starts the game at i.

Image: A mathematical states and the states and

CLU

Nevynne De Leon

Proof of Fundamental Matrix

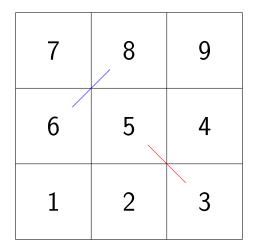
Some Theory of the Fundamental Matrix

Theorem 3.2

For any absorbing Markov Chain. I - Q has an inverse and

$$(I-Q)^{-1} = I + Q + Q^2 \dots = \sum_{k=0}^{\infty} Q^k$$

Theorem 3.4


$$M_i[n_j] = N$$
 where $s_i, s_j \in T$

イロト 不得 トイヨト イヨト

CLU

Nevynne De Leon

Sample 3x3 Board

Nevynne De Leon

Natural Science - Oral Presentation Markov Chains and Snakes and Ladders

2

・ロト ・四ト ・ヨト ・ヨト

Sample 3x3 Board Rules

Rules of 3x3 board

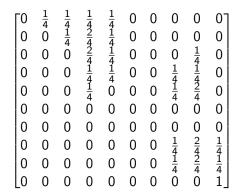
- Start at space 0
- Roll a 4 sided die and move that many spaces forward

Image: A math a math

CLU

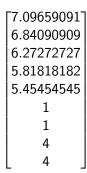
- Go up ladders (blue lines)
- Go down snakes (red lines)
- Land exactly at 9 or "bounce" back

Nevynne De Leon


Transition Matrix without snakes and ladders

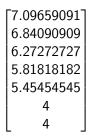
$$\begin{bmatrix} 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

There is a diagonal of $\frac{1}{4}$ until the end


Natural Science - Oral Presentation Markov Chains and Snakes and Ladders

< ロ > < 回 > < 回 > < 回 > < 回 >

Notice some patterns in this Transition Matrix


Using a Python code to find the Fundamental Matrix, we then get the resulting vector of Expected Values with Snakes and ladders to be:

Natural Science - Oral Presentation Markov Chains and Snakes and Ladders

< (T) >

We remove all of the "impossible" states, thus getting

Natural Science - Oral Presentation Markov Chains and Snakes and Ladders

★ 御 ▶ ★ 臣

With/Without Snakes and Ladders

Expected value:

			6.44140625	
	7.09659091		5.953125	
	6.84090909		5.5625	
	6.27272727		5.25	
With:	5.81818182	Without:	5	
	5.45454545		4	
	4		4	
	4		4	
			4	

Nevynne De Leon

Natural Science - Oral Presentation Markov Chains and Snakes and Ladders

æ

< ロ > < 回 > < 回 > < 回 > < 回 >

Standard Deviation of the Expected Value starting from space 1,2,3, and 4:

SD without snakes and ladders: 0.35636905220177 SD with snakes and ladders: 0.51835498562612

Image: A math a math

CLU

Bigger 10x10 board

100	99	98	97	96	95	94	93	92	91
81	82	83	84	85	86	87	88	89	90
80	79	78	77	76	75	74	73	72	71
61	62	63	64	65	66	67	68	69	70
60	59	58	57	56	55	54	53	52	51
41	A 2	43	44	45	46	47	48	49	50
40	39	38	37	36	35	34	33	32	31
21	22/	23	24	25	26	27	28	29	30
20	19	18	17	16	15	-14	13	12	11
1	2	3	4	5	6	7	8	9	10

 $\begin{array}{l} \mathsf{Ladders:}(1,38),(4,14),(9,31),(21,42),(28,84),(51,67),(71,91)\\ \mathsf{Snakes:}(17,7),(54,34),(62,19),(64,60),(87,24),(93,73),(95,75),(98,79)\\ \end{array}$

Nevynne De Leon

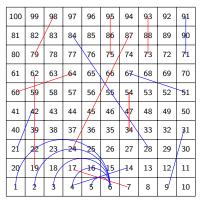
Expected Value of 10x10 Board

Expected Value:

[78.01729741, 83.21632029, 82.75045955, 80.6725099, 82.78735372, 82.59279913].

イロト イポト イヨト イヨト

CLU


Standard Deviation;

1.8255461673323

Nevynne De Leon

Revision to the 10x10 Board

Impossible/Unrealistic Revision:

Ladders: (1, 6), (2, 6), (3, 6), (4, 6), (5, 6), (9, 31), (21, 42), (28, 84), (51, 67), (71, 91)Snakes: (17, 7), (54, 34), (62, 19), (64, 60), (87, 24), (93, 73), (95, 75), (98, 79) = 20

Nevynne De Leon

Revisions cont.

Revision 1:

100	99	98	97	96	95	94	93	92	91
81	82	83	84	85	86	87	88	89	90
80	79	78	77	76	75	74	73	72	71
61	62	63	64	65	66	67	68	69	70
60	59	58	57	56	55	54	53	52	51
41	A 2	43	44	45	46	47	48	49	50
40	39	38	37	36	35	34	33	32	31
21	22	23	24	25	26	27	28	29	30
20	19	18	17	16	15	14	13	12	11
1	2	3	4	5	6	-7	8	9	10

 $\begin{array}{l} \mathsf{Ladders:}[(9,31),(21,42),(28,84),(51,67),(71,91)] \\ \mathsf{Snakes:}[(17,7),(54,34),(62,19),(64,60),(87,24),(93,73),(95,75),(98,79)] \\ \end{array}$

Nevynne De Leon

Expected Value and Standard Deviation

Expected Value

[83.91201371, 83.65690523, 83.12810378, 82.93837528, 82.78735372, 82.59279913].

CLU

Standard Deviation

.46951075134394

Nevynne De Leon

Thank you!

・ロト・日本・日本・日本・日本・日本

Nevynne De Leon