
ABSTRACT
Introducing Fund2Vec: a graph machine 
learning approach to evaluate mutual fund 
similarity. By representing funds and assets 
as a weighted bipartite graph and using 
the node2vec algorithm, we gain a 
nuanced understanding of fund 
similarities. [1] The authors used a k-means 
clustering approach to tune the 
hyperparameters of the embedding. We 
proposed to replace k-means clustering 
with Gaussian model-based clustering for 
better separation of funds and assets in the 
embedding space. Our method 
outperforms traditional k-means clustering 
in identifying anomalous funds, aiding in 
risk management and investment strategy.

BACKGROUND
● Fund2Vec: Evaluates mutual fund 

similarity through graph learning.
● Node2vec Algorithm: Embeds nodes 

(funds and assets) in a vector space for 
machine learning tasks.

● Clustering Methods: K-means and 
Gaussian model-based clustering are 
used to optimize node2vec 
hyperparameters and achieve the best 
separation in the embedding space.

METHOD
● Data Collection: SEC filings (NPORT-P, 

Q1 2020).
● Hyperparameters: Dimension (d), length 

of random walk (l), number of random 
walks per node (r), return parameter (p), 
in-out parameter (q).

● Algorithms: Node2vec for vector 
representation, followed by k-means and 
Gaussian model-based clustering.

● Evaluation: V-measure for clustering 
quality.

★ The number of funds after cleaning: 
1052.  

Reason of being removed: Incorrect data 
reporting, inaccurate identification 
numbers, and so on.  We also found that 
most funds lay within a single connected 
component of the graph, and we removed 
all funds not in that single component.
★ The number of assets after cleaning: 

166,531.
The bipartite graph has 1,052 X 166,531 
(approximately 175.2 million) possible 
edges.  The actual number of edges in the 
graph is 984,526. It is roughly about half a 
percent of the possible edges actually 
appeared as edges.  This seems reasonable 
because funds do not attempt to invest in 
all possible assets but focus on a relative 
few.

RESULTS
● K-means Clustering: Downsampling 

improved V-measure.
● Model-based Clustering: Identified 

anomalous funds, though V-measure was 
lower than k-means.

DISCUSSION
● Anomalous Funds: Identification aids 

investors in making informed decisions.
● Future Directions: Propose methods to 

assess clustering quality and further refine 
fund similarity evaluations.
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INTRODUCTION
Why Mutual Fund Similarity Matters
● Explosion of Mutual Funds: The 

proliferation of mutual funds makes 
choosing the right ones challenging.

● Diverse Investment Goals: Investors 
need tailored strategies to meet 
varied objectives.

● Risk Management: Understanding 
fund similarity helps in diversifying 
risk.

Challenges in Quantifying Fund 
Similarity
● Subjectivity: Traditional methods rely 

on human judgment or predefined 
categories, which may overlook 
similar behaviors across different 
categories.

● Nonlinear Relationships: Complex 
interactions between funds and 
assets can obscure crucial patterns.

Figure 1. Bipartite graph of Funds and Assets

Figure 4. Before Clustering

Figure 7. Anomalous Funds (16 dimensions to 2 dimensions)

K-MEANS V-measure

Downsampling 0.880

Upsampling 0.149

MODEL-BASED V-measure

Downsampling 0.303

Upsampling N/A

Figure 3. Predictive Models for 
Imbalanced Data: A School 
Dropout Perspective, 
https://www.researchgate.ne

Figure 5. After k-means clustering

Figure 6. After model-based clustering

Figure 2. Predictive Models 
for Imbalanced Data: A 
School Dropout Perspective, 
https://www.researchgate.ne
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